9 research outputs found

    PIM kinase inhibition: co-targeted therapeutic approaches in prostate cancer

    Get PDF
    PIM kinases have been shown to play a role in prostate cancer development and progression, as well as in some of the hallmarks of cancer, especially proliferation and apoptosis. Their upregulation in prostate cancer has been correlated with decreased patient overall survival and therapy resistance. Initial efforts to inhibit PIM with monotherapies have been hampered by compensatory upregulation of other pathways and drug toxicity, and as such, it has been suggested that co-targeting PIM with other treatment approaches may permit lower doses and be a more viable option in the clinic. Here, we present the rationale and basis for co-targeting PIM with inhibitors of PI3K/mTOR/AKT, JAK/STAT, MYC, stemness, and RNA Polymerase I transcription, along with other therapies, including androgen deprivation, radiotherapy, chemotherapy, and immunotherapy. Such combined approaches could potentially be used as neoadjuvant therapies, limiting the development of resistance to treatments or sensitizing cells to other therapeutics. To determine which drugs should be combined with PIM inhibitors for each patient, it will be key to develop companion diagnostics that predict response to each co-targeted option, hopefully providing a personalized medicine pathway for subsets of prostate cancer patients in the future

    Co-targeting PIM and PI3K/mTOR using multikinase inhibitor AUM302 and a combination of AZD-1208 and BEZ235 in prostate cancer

    Get PDF
    PIM and PI3K/mTOR pathways are often dysregulated in prostate cancer, and may lead to decreased survival, increased metastasis and invasion. The pathways are heavily interconnected and act on a variety of common efectors that can lead to the development of resistance to drug inhibitors. Most current treatments exhibit issues with toxicity and resistance. We investigated the novel multikinase PIM/PI3K/mTOR inhibitor, AUM302, versus a combination of the PIM inhibitor, AZD-1208, and the PI3K/mTOR inhibitor BEZ235 (Dactolisib) to determine their impact on mRNA and phosphoprotein expression, as well as their functional efcacy. We have determined that around 20% of prostate cancer patients overexpress the direct targets of these drugs, and this cohort are more likely to have a high Gleason grade tumour (≥Gleason 8). A co-targeted inhibition approach ofered broader inhibition of genes and phosphoproteins in the PI3K/mTOR pathway, when compared to single kinase inhibition. The preclinical inhibitor AUM302, used at a lower dose, elicited a comparable or superior functional outcome compared with combined AZD-1208 +BEZ235, which have been investigated in clinical trials, and could help to reduce treatment toxicity in future trials. We believe that a co-targeting approach is a viable therapeutic strategy that should be developed further in pre-clinical studies

    Implementation of Scatternet in an Intelligent IoT Gateway

    No full text

    Co-targeting PIM and PI3K/mTOR using multikinase inhibitor AUM302 and a combination of AZD-1208 and BEZ235 in prostate cancer

    Get PDF
    Abstract PIM and PI3K/mTOR pathways are often dysregulated in prostate cancer, and may lead to decreased survival, increased metastasis and invasion. The pathways are heavily interconnected and act on a variety of common effectors that can lead to the development of resistance to drug inhibitors. Most current treatments exhibit issues with toxicity and resistance. We investigated the novel multikinase PIM/PI3K/mTOR inhibitor, AUM302, versus a combination of the PIM inhibitor, AZD-1208, and the PI3K/mTOR inhibitor BEZ235 (Dactolisib) to determine their impact on mRNA and phosphoprotein expression, as well as their functional efficacy. We have determined that around 20% of prostate cancer patients overexpress the direct targets of these drugs, and this cohort are more likely to have a high Gleason grade tumour (≥ Gleason 8). A co-targeted inhibition approach offered broader inhibition of genes and phosphoproteins in the PI3K/mTOR pathway, when compared to single kinase inhibition. The preclinical inhibitor AUM302, used at a lower dose, elicited a comparable or superior functional outcome compared with combined AZD-1208 + BEZ235, which have been investigated in clinical trials, and could help to reduce treatment toxicity in future trials. We believe that a co-targeting approach is a viable therapeutic strategy that should be developed further in pre-clinical studies
    corecore